Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Adamantan-1-aminium *p*-toluenesulfonate

Yi Zhang* and Bo Wang

Ordered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: yizhang1980@yahoo.com.cn

Received 22 January 2011; accepted 26 January 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.061; wR factor = 0.149; data-to-parameter ratio = 18.2.

There are two unique cations and anions in the asymmetric unit of the title molecular salt, $C_{10}H_{15}NH_3^+ \cdot C_7H_7O_3S^-$. In the crystal, all three hydrogen-bond donors of the protonated amine group make hydrogen-bond interactions with sulfonate O-atom acceptors, linking the cations and anions into chains parallel to the *a* axis. $C-H \cdot \cdot \pi$ interactions are also present.

Related literature

For related structures, see: Tukada & Mochizuki (2003); Zhao *et al.* (2003); Smith *et al.* (2004); He & Wen (2006); Zheng & Wang (2009). For puckering parameters, see: Cremer & Pople (1975). For ribbon hydrogen-bonding motifs, see: Hulme & Tocher (2006).

Experimental

Crystal data

 $\begin{array}{l} C_{10}H_{18}N^+ \cdot C_7 H_7 O_3 S^- \\ M_r = 323.44 \\ \text{Triclinic, } P\overline{1} \\ a = 6.464 \ (2) \ \text{\AA} \\ b = 11.589 \ (4) \ \text{\AA} \\ c = 22.562 \ (8) \ \text{\AA} \\ \alpha = 92.975 \ (4)^\circ \\ \beta = 94.034 \ (5)^\circ \end{array}$

 $\begin{array}{l} \gamma = 96.408~(5)^{\circ} \\ V = 1672.4~(10)~\text{\AA}^3 \\ Z = 4 \\ \text{Mo } K\alpha \text{ radiation} \\ \mu = 0.21~\text{mm}^{-1} \\ T = 298~\text{K} \\ 0.20~\times~0.20~\times~0.20~\text{mm} \end{array}$

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.960, T_{max} = 0.960$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.061$ wR(F^2) = 0.149 S = 1.06 7664 reflections 421 parameters 6 restraints 18425 measured reflections 7664 independent reflections 5720 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.45~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.36~e~{\rm \AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg9 and Cg10 are the centroids of the C22–C27 and C29–C34 rings, respectively.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
(17 - 1170 + 0.210 - 0.27) (0.7) (0.7)	$N1 - H1C \cdots O4$ $N1 - H1D \cdots O5^{i}$ $N1 - H1E \cdots O6^{ii}$ $N2 - H2C \cdots O1$ $N2 - H2B \cdots O2^{iii}$ $N2 - H2A \cdots O3^{iv}$ $C4 - H4A \cdots Cg10^{iv}$ $C7 - H7B \cdots Cg9^{iii}$ $C19 - H10B \cdots Cg10^{v}$	0.89 (2) 0.90 (2) 0.89 (2) 0.91 (2) 0.89 (2) 0.89 (2) 0.89 (2) 0.98 0.97	2.02 (2) 1.99 (2) 1.92 (2) 1.93 (2) 1.92 (2) 2.01 (2) 3.18 2.87 2.91	2.908 (3) 2.883 (3) 2.806 (3) 2.834 (3) 2.806 (3) 2.901 (3) 3.878 (3) 3.801 (3) 3.861 (3)	177 (3) 177 (3) 173 (3) 174 (3) 170 (3) 175 (3) 130 161

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 2, -y + 1, -z + 2; (iii) -x + 1, -y + 1, -z + 1; (iv) x - 1, y, z; (v) x, y - 1, z.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Start-up Projects for Postdoctoral Research Funds (1112000064) and Major Postdoctoral Research Funds (3212000602) of Southeast University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2261).

References

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
He, Y.-H. & Wen, Y.-H. (2006). Acta Cryst. E62, 01312–01313.
Hulme, A. T. & Tocher, D. A. (2006). Cryst. Growth Des. 6, 481–487.
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, 01257–01259.
Tukada, H. & Mochizuki, K. (2003). J. Mol. Struct. 655, 473–478.
Zhao, G. L., Feng, Y. L., Hu, X. C. & Kong, L. C. (2003). Chin. J. Appl. Chem. 20, 806–808.

Zheng, W.-N. & Wang, B. (2009). Acta Cryst. E65, o2769.

Acta Cryst. (2011). E67, o543 [doi:10.1107/S1600536811003436]

Adamantan-1-aminium p-toluenesulfonate

Y. Zhang and B. Wang

Comment

Owing to its highly symmetrical and stable structure, adamantane and its derivatives have generated much interest in the past and continue to be actively studied as evidenced by the large number of compounds containing amantadine that have been synthesized (Tukada & Mochizuki, 2003; Zhao *et al.*, 2003; He & Wen, 2006). Our group have reported the crystal structures of the compounds of $C_{10}H_{15}NH_3^+$. $C_7H_5O_2^-$. Here we report the synthesis and *CrystalStructure* of the title compound, (I), $C_{10}H_{15}NH_3^+$. $C_7H_7O_3S^-$, a salt obtained from the reaction of adamantane-1-ammonium hydrochloride and toluene-4-sulfonic acid sodium salt.

In the molecule of the title compound, the bond lengths and angles are within their normal ranges. There are two pairs of adamantane-1-ammonium cation and toluene-4-sulfonic acid anion in one asymmetric unit(Fig. 1). The dihedral angle between the benzene ring A (C22–C27) and benzene ring B (C29–C34) is A/B = 20.83 °. The two molecules are both stabilized by N—H···O hydrogen bonding, among which, N1—H1C···O4 and N2—H2C···O1 are intramolecular hydrogen bonds. All three hydrogen donors of the protonated amine group give direct hydrogen-bonding associations, with three of the sulfonate O-atom acceptors from three independent toluene-4-sulfonic acid anions. The hydrogen bonds are summarized in Tab. 1. Fig. 2 shows a view down the *c* axis. The N—H···O hydrogen bonds between the discrete adamantane-1-ammoniumcations and toluene-4-sulfonic acid anions result in a noteworthy one-dimensional ribbon-like structure parallel to (1 0 0) (Fig. 2). This ribbon motif is the dominant hydrogen-bonding motif (Hulme *et al.*, 2006). In addition, strong π -ring C7 –H7A···*Cg*9ⁱⁱⁱ, C4 –H4B···*Cg*10^{iv}, C19 –H19B··· *Cg*10^v interactions exist which contribute to crystal stability [*Cg*9 and *Cg*10 is the center of gravity of ring A and B, Symmetry code: (iii) -*x* + 1, -*y* + 1, -*z* + 1; (iv) *x* - 1, *y*, *z*; (v) *x*, *y* - 1, *z*.]

Experimental

A mixture of adamantane-1-ammonium hydrochloride (10 mmol, 1.94 g), toluene-4-sulfonic acidsodium salt (10 mmol, 1.88 g) and methanol (50 ml) was stirred in a beaker. There were many solid powders produced and the solution was filtered. Colorless single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of the solvents over a period of a week.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent ($\varepsilon = C/(T-T_0)$), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature range between 93 K and 362 K (m.p. 99 °C).

Refinement

The positional parameters of all C-bound H atoms were calculated geometrically and allowed to ride, with $U_{iso}(H) = 1.5Ueq(C)$ for methyl H atoms and 1.2Ueq(C) for all other H atoms. All ammonium H atoms were found in a difference Fourier map and refined with restraints for the N—H distances of 0.87 (2) Å.

Figures

Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme and displacement ellipsoids drawn at the 30% probability level.

Fig. 2. A view of the crystal packing of the title compound. Dashed lines indicate N–H···O hydrogen bonds which form infinite, one-dimensional chains along the *a* axis of the unit cell. H atoms not involved in hydrogen bonding have been omitted for clarity.

Adamantan-1-aminium *p*-toluenesulfonate

Crystal data

$C_{10}H_{18}N^+ \cdot C_7H_7O_3S^-$	Z = 4
$M_r = 323.44$	F(000) = 696
Triclinic, <i>P</i> 1	$D_{\rm x} = 1.285 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.464 (2) Å	Cell parameters from 2622 reflections
b = 11.589 (4) Å	$\theta = 3.0-27.5^{\circ}$
c = 22.562 (8) Å	$\mu = 0.21 \text{ mm}^{-1}$
$\alpha = 92.975 \ (4)^{\circ}$	T = 298 K
$\beta = 94.034 \ (5)^{\circ}$	Prism, colourless
$\gamma = 96.408 \ (5)^{\circ}$	$0.20 \times 0.20 \times 0.20 \text{ mm}$
$V = 1672.4 (10) \text{ Å}^3$	

Data collection

Rigaku SCXmini diffractometer	7664 independent reflections
Radiation source: fine-focus sealed tube	5720 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.041$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
ω scans	$h = -8 \rightarrow 8$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -15 \rightarrow 15$
$T_{\min} = 0.960, \ T_{\max} = 0.960$	<i>l</i> = −29→29
18425 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.061$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.149$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0577P)^2 + 0.5519P]$ where $P = (F_o^2 + 2F_c^2)/3$
7664 reflections	$(\Delta/\sigma)_{max} < 0.001$
421 parameters	$\Delta \rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$
6 restraints	$\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.77493 (9)	0.69083 (5)	0.55264 (3)	0.03980 (16)
S2	0.74660 (10)	0.63466 (5)	0.92134 (3)	0.04414 (17)
01	0.6491 (3)	0.69428 (16)	0.60347 (7)	0.0496 (4)
02	0.7429 (4)	0.57650 (17)	0.52171 (8)	0.0690 (6)
03	0.9931 (3)	0.73164 (18)	0.56771 (9)	0.0624 (5)
O4	0.6009 (3)	0.53539 (17)	0.90067 (9)	0.0704 (6)
O5	0.6549 (5)	0.72161 (19)	0.95484 (12)	0.1036 (10)
O6	0.9274 (3)	0.5982 (2)	0.95394 (9)	0.0757 (7)
N1	0.6926 (4)	0.34970 (18)	0.97681 (10)	0.0404 (5)
H1E	0.807 (3)	0.369 (2)	1.0008 (10)	0.051 (8)*
H1D	0.584 (4)	0.331 (2)	0.9986 (11)	0.065 (9)*
H1C	0.662 (4)	0.408 (2)	0.9545 (11)	0.066 (9)*
N2	0.2620 (3)	0.5509 (2)	0.58768 (10)	0.0406 (5)
H2C	0.390 (3)	0.593 (2)	0.5944 (12)	0.057 (8)*
H2B	0.254 (5)	0.503 (2)	0.5550 (11)	0.077 (11)*
H2A	0.172 (4)	0.603 (2)	0.5820 (12)	0.060 (9)*
C1	-0.0056 (4)	0.4160 (2)	0.62903 (11)	0.0451 (6)
H1A	-0.0101	0.3636	0.5939	0.054*
H1B	-0.1082	0.4698	0.6221	0.054*
C2	0.2118 (3)	0.48292 (19)	0.64076 (9)	0.0323 (5)
C3	0.2180 (4)	0.5664 (2)	0.69513 (11)	0.0478 (6)
НЗА	0.1161	0.6208	0.6888	0.057*
H3B	0.3552	0.6104	0.7019	0.057*

C4	0.1690 (5)	0.4966 (2)	0.74942 (11)	0.0540 (7)
H4A	0.1728	0.5500	0.7847	0.065*
C5	-0.0484 (4)	0.4300 (3)	0.73803 (12)	0.0543 (7)
H5A	-0.0827	0.3868	0.7724	0.065*
H5B	-0.1507	0.4842	0.7318	0.065*
C6	-0.0558 (4)	0.3464 (2)	0.68349 (12)	0.0487 (6)
H6A	-0.1957	0.3035	0.6766	0.058*
C7	0.3731 (4)	0.3978 (2)	0.65023 (11)	0.0455 (6)
H7A	0.5118	0.4401	0.6569	0.055*
H7B	0.3703	0.3455	0.6151	0.055*
C8	0.3228 (4)	0.3284 (2)	0.70416 (12)	0.0505 (7)
H8A	0.4257	0.2734	0.7105	0.061*
C9	0.1040 (4)	0.2613 (2)	0.69326 (12)	0.0530(7)
H9A	0.0989	0.2077	0.6586	0.064*
H9B	0.0721	0.2165	0.7273	0.064*
C10	0.3292 (5)	0.4114 (3)	0.75947 (12)	0.0593 (8)
H10A	0.2984	0.3675	0.7939	0.071*
H10B	0.4676	0.4536	0.7670	0.071*
C11	0.7115 (3)	0.24380 (18)	0.93733 (9)	0.0313 (5)
C12	0.5136 (4)	0.2176 (2)	0.89602 (11)	0.0404 (5)
H12A	0.4953	0.2834	0.8721	0.049*
H12B	0.3934	0.2042	0.9192	0.049*
C13	0.9013 (4)	0.2673 (2)	0.90126 (10)	0.0394 (5)
H13A	1.0267	0.2854	0.9278	0.047*
H13B	0.8857	0.3331	0.8772	0.047*
C14	0.7379 (4)	0.14183 (19)	0.97613 (10)	0.0389 (5)
H14A	0.6193	0.1286	0.9999	0.047*
H14B	0.8631	0.1591	1.0028	0.047*
C15	0.7543 (4)	0.0330(2)	0.93597 (11)	0.0441 (6)
H15A	0.7712	-0.0331	0.9605	0.053*
C16	0.5573 (4)	0.0060 (2)	0.89403 (12)	0.0498 (6)
H16A	0.4366	-0.0086	0.9170	0.060*
H16B	0.5672	-0.0633	0.8688	0.060*
C17	0.5313 (4)	0.1090 (2)	0.85546 (11)	0.0460 (6)
H17A	0.4046	0.0916	0.8286	0.055*
C18	0.7210 (4)	0.1309 (3)	0.81899 (11)	0.0539(7)
H18A	0.7045	0.1956	0.7941	0.065*
H18B	0.7328	0.0625	0.7933	0.065*
C19	0.9435 (4)	0.0554(2)	0.89951 (13)	0.0514 (7)
H19A	0.9563	-0.0133	0.8742	0.062*
H19B	1 0694	0.0716	0 9260	0.062*
C20	0.9185 (4)	0 1586 (2)	0.86126 (11)	0.0458 (6)
H20A	1.0402	0.1723	0.8379	0.055*
C21	0.4410 (6)	1.0064 (3)	0.37104 (14)	0.0785 (10)
H21A	0.2931	0.9859	0.3635	0.118*
H21B	0.5080	0.9951	0.3349	0.118*
H21C	0.4687	1.0866	0.3853	0.118*
C22	0.5244 (4)	0.9307 (2)	0.41724 (11)	0.0480 (6)
C23	0.7334 (5)	0.9425 (2)	0.43641 (12)	0.0541 (7)

H23A	0.8241	0.9993	0.4209	0.065*
C24	0.8118 (4)	0.8718 (2)	0.47826 (11)	0.0463 (6)
H24A	0.9535	0.8811	0.4904	0.056*
C25	0.6786 (3)	0.7876 (2)	0.50179 (10)	0.0362 (5)
C26	0.4681 (4)	0.7753 (3)	0.48367 (12)	0.0509 (7)
H26A	0.3768	0.7196	0.4997	0.061*
C27	0.3941 (4)	0.8462 (3)	0.44176 (12)	0.0525 (7)
H27A	0.2524	0.8369	0.4296	0.063*
C28	1.0559 (6)	0.8874 (3)	0.70974 (14)	0.0758 (10)
H28A	1.2028	0.9116	0.7170	0.114*
H28B	0.9827	0.9546	0.7059	0.114*
H28C	1.0310	0.8386	0.6737	0.114*
C29	0.9792 (4)	0.8206 (2)	0.76101 (11)	0.0474 (6)
C30	1.1150 (4)	0.8022 (2)	0.80870 (11)	0.0460 (6)
H30A	1.2555	0.8302	0.8084	0.055*
C31	1.0482 (4)	0.7432 (2)	0.85693 (11)	0.0423 (6)
H31A	1.1430	0.7314	0.8883	0.051*
C32	0.8394 (4)	0.70212 (19)	0.85811 (10)	0.0361 (5)
C33	0.7015 (4)	0.7182 (2)	0.81016 (11)	0.0479 (6)
H33A	0.5612	0.6897	0.8103	0.057*
C34	0.7716 (5)	0.7760 (2)	0.76237 (12)	0.0551 (7)
H34A	0.6778	0.7854	0.7303	0.066*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0379 (3)	0.0447 (3)	0.0370 (3)	0.0042 (2)	0.0006 (2)	0.0077 (3)
S2	0.0530 (4)	0.0326 (3)	0.0478 (4)	0.0037 (3)	0.0118 (3)	0.0035 (3)
01	0.0476 (10)	0.0645 (12)	0.0381 (9)	0.0044 (8)	0.0080 (8)	0.0134 (8)
O2	0.1153 (18)	0.0447 (11)	0.0475 (11)	0.0191 (11)	-0.0045 (11)	0.0012 (9)
O3	0.0337 (9)	0.0809 (14)	0.0734 (13)	0.0027 (9)	-0.0023 (9)	0.0287 (11)
O4	0.0761 (14)	0.0513 (12)	0.0760 (14)	-0.0211 (10)	-0.0186 (11)	0.0233 (10)
O5	0.163 (3)	0.0508 (13)	0.116 (2)	0.0313 (15)	0.1022 (19)	0.0185 (13)
O6	0.0668 (14)	0.0986 (17)	0.0568 (12)	-0.0103 (12)	-0.0185 (11)	0.0335 (12)
N1	0.0456 (13)	0.0327 (11)	0.0431 (12)	0.0036 (9)	0.0064 (10)	0.0025 (9)
N2	0.0378 (12)	0.0466 (13)	0.0380 (11)	0.0032 (10)	0.0046 (9)	0.0095 (10)
C1	0.0362 (13)	0.0532 (15)	0.0452 (14)	-0.0016 (11)	-0.0002 (11)	0.0142 (12)
C2	0.0287 (10)	0.0378 (12)	0.0310 (11)	0.0037 (9)	0.0027 (9)	0.0072 (9)
C3	0.0614 (16)	0.0399 (13)	0.0422 (14)	0.0020 (12)	0.0107 (12)	0.0011 (11)
C4	0.078 (2)	0.0509 (16)	0.0340 (13)	0.0054 (14)	0.0130 (13)	-0.0007 (12)
C5	0.0557 (16)	0.0606 (17)	0.0534 (16)	0.0161 (13)	0.0258 (13)	0.0188 (14)
C6	0.0381 (13)	0.0541 (16)	0.0537 (16)	-0.0042 (11)	0.0058 (12)	0.0182 (13)
C7	0.0385 (13)	0.0559 (16)	0.0464 (14)	0.0162 (11)	0.0094 (11)	0.0115 (12)
C8	0.0458 (14)	0.0590 (17)	0.0528 (15)	0.0242 (12)	0.0065 (12)	0.0204 (13)
C9	0.0717 (19)	0.0403 (14)	0.0479 (15)	0.0025 (13)	0.0110 (14)	0.0108 (12)
C10	0.0559 (17)	0.080 (2)	0.0396 (14)	-0.0022 (15)	-0.0075 (13)	0.0171 (14)
C11	0.0351 (11)	0.0266 (10)	0.0333 (11)	0.0054 (8)	0.0051 (9)	0.0043 (9)
C12	0.0346 (12)	0.0394 (13)	0.0485 (14)	0.0088 (10)	-0.0002 (10)	0.0082 (11)

C13	0.0358 (12)	0.0433 (13)	0.0392 (13)	-0.0007 (10)	0.0063 (10)	0.0082 (10)
C14	0.0436 (13)	0.0361 (12)	0.0382 (12)	0.0061 (10)	0.0050 (10)	0.0087 (10)
C15	0.0524 (15)	0.0320 (12)	0.0496 (14)	0.0094 (10)	0.0037 (12)	0.0091 (11)
C16	0.0497 (15)	0.0355 (13)	0.0623 (17)	-0.0018 (11)	0.0060 (13)	-0.0019 (12)
C17	0.0389 (13)	0.0485 (14)	0.0468 (14)	-0.0009 (11)	-0.0097 (11)	-0.0018 (12)
C18	0.0636 (17)	0.0579 (17)	0.0390 (14)	0.0056 (13)	0.0024 (13)	-0.0025 (12)
C19	0.0452 (14)	0.0496 (15)	0.0608 (17)	0.0163 (12)	0.0041 (13)	-0.0063 (13)
C20	0.0395 (13)	0.0551 (15)	0.0438 (14)	0.0054 (11)	0.0142 (11)	-0.0021 (12)
C21	0.097 (3)	0.084 (2)	0.063 (2)	0.038 (2)	0.0034 (19)	0.0289 (18)
C22	0.0590 (16)	0.0494 (15)	0.0385 (13)	0.0179 (12)	0.0036 (12)	0.0059 (11)
C23	0.0620 (18)	0.0457 (15)	0.0543 (16)	-0.0031 (13)	0.0072 (14)	0.0165 (13)
C24	0.0389 (13)	0.0460 (14)	0.0526 (15)	-0.0018 (11)	0.0024 (11)	0.0069 (12)
C25	0.0344 (12)	0.0399 (12)	0.0345 (12)	0.0038 (9)	0.0049 (9)	0.0030 (10)
C26	0.0361 (13)	0.0649 (17)	0.0526 (16)	0.0009 (12)	0.0050 (12)	0.0204 (13)
C27	0.0388 (14)	0.0727 (19)	0.0477 (15)	0.0118 (13)	0.0000 (12)	0.0122 (14)
C28	0.101 (3)	0.072 (2)	0.0554 (18)	0.0016 (19)	0.0131 (18)	0.0179 (17)
C29	0.0646 (17)	0.0393 (13)	0.0388 (13)	0.0066 (12)	0.0070 (12)	0.0013 (11)
C30	0.0437 (14)	0.0483 (15)	0.0456 (14)	0.0022 (11)	0.0079 (11)	-0.0009 (12)
C31	0.0402 (13)	0.0488 (14)	0.0375 (13)	0.0064 (11)	0.0011 (10)	-0.0012 (11)
C32	0.0403 (12)	0.0305 (11)	0.0371 (12)	0.0058 (9)	0.0023 (10)	-0.0037 (9)
C33	0.0411 (14)	0.0488 (15)	0.0520 (15)	0.0028 (11)	-0.0048 (12)	0.0030 (12)
C34	0.0592 (17)	0.0576 (17)	0.0460 (15)	0.0035 (13)	-0.0117 (13)	0.0078 (13)

Geometric parameters (Å, °)

S1—O3	1.4474 (19)	C13—C20	1.530 (3)
S1—O2	1.452 (2)	C13—H13A	0.9700
S1—O1	1.4535 (18)	С13—Н13В	0.9700
S1—C25	1.775 (2)	C14—C15	1.532 (3)
S2—O5	1.434 (2)	C14—H14A	0.9700
S2—O4	1.438 (2)	C14—H14B	0.9700
S2—O6	1.451 (2)	C15—C16	1.525 (4)
S2—C32	1.771 (2)	C15—C19	1.527 (4)
N1—C11	1.500 (3)	C15—H15A	0.9800
N1—H1E	0.886 (17)	C16—C17	1.530 (4)
N1—H1D	0.897 (17)	C16—H16A	0.9700
N1—H1C	0.894 (17)	С16—Н16В	0.9700
N2—C2	1.502 (3)	C17—C18	1.530 (4)
N2—H2C	0.908 (17)	С17—Н17А	0.9800
N2—H2B	0.894 (18)	C18—C20	1.532 (4)
N2—H2A	0.894 (17)	C18—H18A	0.9700
C1—C2	1.526 (3)	C18—H18B	0.9700
C1—C6	1.538 (3)	C19—C20	1.527 (4)
C1—H1A	0.9700	С19—Н19А	0.9700
C1—H1B	0.9700	С19—Н19В	0.9700
C2—C3	1.518 (3)	C20—H20A	0.9800
C2—C7	1.525 (3)	C21—C22	1.507 (4)
C3—C4	1.535 (3)	C21—H21A	0.9600
С3—НЗА	0.9700	C21—H21B	0.9600

С3—Н3В	0.9700	C21—H21C	0.9600
C4—C10	1.523 (4)	C22—C23	1.379 (4)
C4—C5	1.525 (4)	C22—C27	1.383 (4)
C4—H4A	0.9800	C23—C24	1.388 (4)
C5—C6	1.520 (4)	C23—H23A	0.9300
С5—Н5А	0.9700	C24—C25	1.381 (3)
С5—Н5В	0.9700	C24—H24A	0.9300
С6—С9	1.519 (4)	C25—C26	1.382 (3)
С6—Н6А	0.9800	C26—C27	1.379 (4)
С7—С8	1.528 (3)	C26—H26A	0.9300
С7—Н7А	0.9700	С27—Н27А	0.9300
С7—Н7В	0.9700	C28—C29	1.507 (4)
C8—C10	1.531 (4)	C28—H28A	0.9600
C8—C9	1.533 (4)	C28—H28B	0.9600
C8—H8A	0.9800	C28—H28C	0.9600
С9—Н9А	0.9700	C29—C30	1.381 (4)
С9—Н9В	0.9700	C29—C34	1.386 (4)
C10—H10A	0.9700	C30—C31	1.384 (3)
C10—H10B	0.9700	C30—H30A	0.9300
C11—C12	1.521 (3)	C31—C32	1.382 (3)
C11—C14	1.524 (3)	C31—H31A	0.9300
C11—C13	1.527 (3)	C32—C33	1.386 (3)
C12—C17	1.537 (3)	C33—C34	1.376 (4)
C12—H12A	0.9700	С33—Н33А	0.9300
C12—H12B	0.9700	C34—H34A	0.9300
03—81—02	113.03 (14)	C11—C13—C20	108.48 (19)
03—S1—02 03—S1—01	113.03 (14) 113.08 (11)	C11—C13—C20 C11—C13—H13A	108.48 (19) 110.0
03—S1—02 03—S1—01 02—S1—01	113.03 (14) 113.08 (11) 110.73 (13)	C11—C13—C20 C11—C13—H13A C20—C13—H13A	108.48 (19) 110.0 110.0
03—S1—02 03—S1—01 02—S1—01 03—S1—C25	113.03 (14) 113.08 (11) 110.73 (13) 106.86 (11)	C11—C13—C20 C11—C13—H13A C20—C13—H13A C11—C13—H13B	108.48 (19) 110.0 110.0 110.0
03—S1—02 03—S1—01 02—S1—01 03—S1—C25 02—S1—C25	113.03 (14) 113.08 (11) 110.73 (13) 106.86 (11) 105.94 (11)	C11—C13—C20 C11—C13—H13A C20—C13—H13A C11—C13—H13B C20—C13—H13B	108.48 (19) 110.0 110.0 110.0 110.0 110.0
03—S1—O2 03—S1—O1 02—S1—O1 03—S1—C25 02—S1—C25 01—S1—C25	113.03 (14) 113.08 (11) 110.73 (13) 106.86 (11) 105.94 (11) 106.65 (11)	C11—C13—C20 C11—C13—H13A C20—C13—H13A C11—C13—H13B C20—C13—H13B H13A—C13—H13B	108.48 (19) 110.0 110.0 110.0 110.0 108.4
03—S1—02 03—S1—01 02—S1—01 03—S1—C25 02—S1—C25 01—S1—C25 05—S2—04	113.03 (14) 113.08 (11) 110.73 (13) 106.86 (11) 105.94 (11) 106.65 (11) 113.53 (17)	C11—C13—C20 C11—C13—H13A C20—C13—H13A C11—C13—H13B C20—C13—H13B H13A—C13—H13B C11—C14—C15	108.48 (19) 110.0 110.0 110.0 110.0 108.4 108.98 (18)
$\begin{array}{c} 03 \\ - 81 \\ - 02 \\ 03 \\ - 81 \\ - 01 \\ 02 \\ - 81 \\ - 01 \\ 03 \\ - 81 \\ - 025 \\ 02 \\ - 81 \\ - 025 \\ 01 \\ - 81 \\ - 025 \\ 05 \\ - 82 \\ - 04 \\ 05 \\ - 82 \\ - 06 \end{array}$	113.03 (14) 113.08 (11) 110.73 (13) 106.86 (11) 105.94 (11) 106.65 (11) 113.53 (17) 111.87 (17)	C11—C13—C20 C11—C13—H13A C20—C13—H13A C11—C13—H13B C20—C13—H13B H13A—C13—H13B C11—C14—C15 C11—C14—C15 C11—C14—H14A	108.48 (19) 110.0 110.0 110.0 110.0 108.4 108.98 (18) 109.9
$\begin{array}{c} 03 \\ - 81 \\ - 02 \\ 03 \\ - 81 \\ - 01 \\ 02 \\ - 81 \\ - 01 \\ 03 \\ - 81 \\ - 025 \\ 03 \\ - 81 \\ - 025 \\ 02 \\ - 81 \\ - 025 \\ 01 \\ - 81 \\ - 025 \\ 05 \\ - 82 \\ - 04 \\ 05 \\ - 82 \\ - 06 \end{array}$	113.03 (14) 113.08 (11) 110.73 (13) 106.86 (11) 105.94 (11) 106.65 (11) 113.53 (17) 111.87 (17) 110.51 (13)	C11—C13—C20 C11—C13—H13A C20—C13—H13A C11—C13—H13B C20—C13—H13B H13A—C13—H13B C11—C14—C15 C11—C14—H14A C15—C14—H14A	108.48 (19) 110.0 110.0 110.0 108.4 108.98 (18) 109.9 109.9
$\begin{array}{c} 03 - 81 - 02 \\ 03 - 81 - 01 \\ 02 - 81 - 01 \\ 03 - 81 - C25 \\ 02 - 81 - C25 \\ 01 - 81 - C25 \\ 05 - 82 - 04 \\ 05 - 82 - 06 \\ 04 - 82 - 06 \\ 05 - 82 - C32 \end{array}$	113.03 (14) 113.08 (11) 110.73 (13) 106.86 (11) 105.94 (11) 106.65 (11) 113.53 (17) 111.87 (17) 110.51 (13) 106.22 (12)	C11—C13—C20 C11—C13—H13A C20—C13—H13A C11—C13—H13B C20—C13—H13B H13A—C13—H13B C11—C14—C15 C11—C14—H14A C15—C14—H14A C11—C14—H14B	108.48 (19) 110.0 110.0 110.0 108.4 108.98 (18) 109.9 109.9 109.9
$\begin{array}{c} 03 \\ - 81 \\ - 02 \\ 03 \\ - 81 \\ - 01 \\ 02 \\ - 81 \\ - 01 \\ 03 \\ - 81 \\ - 025 \\ 03 \\ - 81 \\ - 025 \\ 01 \\ - 81 \\ - 025 \\ 01 \\ - 81 \\ - 025 \\ 01 \\ - 81 \\ - 025 \\ 01 \\ - 81 \\ - 025 \\ 01 \\ - 81 \\ - 01 \\ 01 \\ - 82 \\ - 06 \\ 05 \\ - 82 \\ - 06 \\ 05 \\ - 82 \\ - 032 \\ 04 \\ - 82 \\ - 032 \end{array}$	113.03 (14) 113.08 (11) 110.73 (13) 106.86 (11) 105.94 (11) 106.65 (11) 113.53 (17) 111.87 (17) 110.51 (13) 106.22 (12) 107.86 (12)	C11—C13—C20 C11—C13—H13A C20—C13—H13A C11—C13—H13B C20—C13—H13B H13A—C13—H13B C11—C14—C15 C11—C14—C15 C11—C14—H14A C15—C14—H14B C15—C14—H14B	108.48 (19) 110.0 110.0 110.0 108.4 108.98 (18) 109.9 109.9 109.9 109.9
$\begin{array}{c} 03 - 81 - 02 \\ 03 - 81 - 01 \\ 02 - 81 - 01 \\ 03 - 81 - C25 \\ 02 - 81 - C25 \\ 01 - 81 - C25 \\ 05 - 82 - 04 \\ 05 - 82 - 06 \\ 04 - 82 - 06 \\ 05 - 82 - C32 \\ 04 - 82 - C32 \\ 06 - 82 - C32 \end{array}$	113.03 (14) 113.08 (11) 110.73 (13) 106.86 (11) 105.94 (11) 106.65 (11) 113.53 (17) 111.87 (17) 110.51 (13) 106.22 (12) 107.86 (12) 106.43 (12)	C11—C13—C20 C11—C13—H13A C20—C13—H13A C11—C13—H13B C20—C13—H13B H13A—C13—H13B C11—C14—C15 C11—C14—H14A C15—C14—H14A C15—C14—H14B H14A—C14—H14B	108.48 (19) 110.0 110.0 110.0 108.4 108.98 (18) 109.9 109.9 109.9 109.9 109.9
O3—S1—O2 O3—S1—O1 O2—S1—O1 O3—S1—C25 O2—S1—C25 O1—S1—C25 O5—S2—O4 O5—S2—O6 O4—S2—O6 O4—S2—C32 O4—S2—C32 O6—S2—C32 C11—N1—H1E	113.03 (14) 113.08 (11) 110.73 (13) 106.86 (11) 105.94 (11) 106.65 (11) 113.53 (17) 111.87 (17) 110.51 (13) 106.22 (12) 107.86 (12) 106.43 (12) 111.5 (18)	C11—C13—C20 C11—C13—H13A C20—C13—H13A C11—C13—H13B C20—C13—H13B H13A—C13—H13B C11—C14—C15 C11—C14—H14A C15—C14—H14A C15—C14—H14B H14A—C14—H14B C16—C15—C19	108.48 (19) 110.0 110.0 110.0 108.4 108.98 (18) 109.9 109.9 109.9 109.9 109.9 109.9 109.9
O3—S1—O2 O3—S1—O1 O2—S1—O1 O3—S1—C25 O2—S1—C25 O1—S1—C25 O5—S2—O4 O5—S2—O6 O4—S2—O6 O5—S2—C32 O4—S2—C32 O6—S2—C32 C11—N1—H1E C11—N1—H1D	113.03 (14) 113.08 (11) 110.73 (13) 106.86 (11) 105.94 (11) 106.65 (11) 113.53 (17) 111.87 (17) 110.51 (13) 106.22 (12) 107.86 (12) 106.43 (12) 111.5 (18) 105.9 (19)	C11—C13—C20 C11—C13—H13A C20—C13—H13A C11—C13—H13B C20—C13—H13B H13A—C13—H13B C11—C14—C15 C11—C14—C15 C11—C14—H14A C15—C14—H14B C15—C14—H14B H14A—C14—H14B H14A—C14—H14B C16—C15—C19 C16—C15—C14	108.48 (19) 110.0 110.0 110.0 108.4 108.98 (18) 109.9 109.4 (2) 109.8
O3—S1—O2 O3—S1—O1 O2—S1—O1 O3—S1—C25 O2—S1—C25 O1—S1—C25 O5—S2—O4 O5—S2—O6 O4—S2—O6 O5—S2—C32 O4—S2—C32 O4—S2—C32 C11—N1—H1E C11—N1—H1D H1E—N1—H1D	113.03 (14) 113.08 (11) 110.73 (13) 106.86 (11) 105.94 (11) 106.65 (11) 113.53 (17) 111.87 (17) 110.51 (13) 106.22 (12) 107.86 (12) 106.43 (12) 111.5 (18) 105.9 (19) 109 (3)	C11—C13—C20 C11—C13—H13A C20—C13—H13A C11—C13—H13B C20—C13—H13B H13A—C13—H13B C11—C14—C15 C11—C14—C15 C11—C14—H14A C15—C14—H14A C15—C14—H14B H14A—C14—H14B C16—C15—C19 C16—C15—C14 C19—C15—C14	108.48 (19) 110.0 110.0 110.0 108.4 108.98 (18) 109.9 109.8 (2) 109.8 (2) 109.9 109.9 109.8 (2) (2) (2) (2) (2) (2) (2) (2)
O3—S1—O2 O3—S1—O1 O2—S1—O1 O3—S1—C25 O2—S1—C25 O1—S1—C25 O5—S2—O4 O5—S2—O6 O4—S2—O6 O4—S2—C32 O4—S2—C32 O6—S2—C32 C11—N1—H1E C11—N1—H1D H1E—N1—H1D C11—N1—H1C	113.03 (14) 113.08 (11) 110.73 (13) 106.86 (11) 105.94 (11) 106.65 (11) 113.53 (17) 111.87 (17) 110.51 (13) 106.22 (12) 107.86 (12) 106.43 (12) 111.5 (18) 105.9 (19) 109 (3) 109.6 (19)	C11—C13—C20 C11—C13—H13A C20—C13—H13A C11—C13—H13B C20—C13—H13B H13A—C13—H13B C11—C14—C15 C11—C14—H14A C15—C14—H14A C15—C14—H14B H14A—C14—H14B C16—C15—C19 C16—C15—C14 C19—C15—C14 C16 C16—C15—C14 C16 C16 C16 C16 C16 C16 C16 C16	108.48 (19) 110.0 110.0 110.0 108.4 108.98 (18) 109.9 109.
O3—S1—O2 O3—S1—O1 O2—S1—O1 O3—S1—C25 O2—S1—C25 O1—S1—C25 O5—S2—O4 O5—S2—O6 O4—S2—C6 O4—S2—C32 O4—S2—C32 O6—S2—C32 C11—N1—H1E C11—N1—H1D H1E—N1—H1D C11—N1—H1C H1E—N1—H1C	113.03 (14) 113.08 (11) 110.73 (13) 106.86 (11) 105.94 (11) 106.65 (11) 113.53 (17) 111.87 (17) 110.51 (13) 106.22 (12) 107.86 (12) 106.43 (12) 111.5 (18) 105.9 (19) 109 (3) 109.6 (19) 112 (3)	C11—C13—C20 C11—C13—H13A C20—C13—H13A C11—C13—H13B C20—C13—H13B H13A—C13—H13B C11—C14—C15 C11—C14—H14A C15—C14—H14A C15—C14—H14B H14A—C14—H14B H14A—C14—H14B C16—C15—C19 C16—C15—C14 C19—C15—C14 C16—C15—H15A C19—C15—H15A	108.48 (19) 110.0 110.0 110.0 108.4 108.98 (18) 109.9 109.6 109.
O3—S1—O2 O3—S1—O1 O2—S1—O1 O3—S1—C25 O2—S1—C25 O1—S1—C25 O5—S2—O4 O5—S2—O6 O4—S2—O6 O5—S2—C32 O4—S2—C32 O4—S2—C32 C11—N1—H1E C11—N1—H1D H1E—N1—H1D H1E—N1—H1C H1E—N1—H1C H1D—N1—H1C	113.03 (14) 113.08 (11) 110.73 (13) 106.86 (11) 105.94 (11) 106.65 (11) 113.53 (17) 111.87 (17) 110.51 (13) 106.22 (12) 107.86 (12) 106.43 (12) 111.5 (18) 105.9 (19) 109 (3) 109.6 (19) 112 (3) 108 (3)	C11—C13—C20 C11—C13—H13A C20—C13—H13A C11—C13—H13B C20—C13—H13B H13A—C13—H13B C11—C14—C15 C11—C14—C15 C11—C14—H14A C15—C14—H14B C15—C14—H14B H14A—C14—H14B C16—C15—C19 C16—C15—C14 C16—C15—C14 C16—C15—C14 C16—C15—C14 C16—C15—H15A C14—C15—H15A	108.48 (19) 110.0 110.0 110.0 108.4 108.98 (18) 109.9 109.6 109.6 109.6 109.6
O3-S1-O2 O3-S1-O1 O2-S1-O1 O3-S1-C25 O2-S1-C25 O1-S1-C25 O5-S2-O4 O5-S2-O6 O4-S2-O6 O4-S2-C32 O4-S2-C32 O4-S2-C32 O4-S2-C32 C11-N1-H1E C11-N1-H1D H1E-N1-H1D H1E-N1-H1C H1E-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C C2-N2-H2C	113.03 (14) 113.08 (11) 110.73 (13) 106.86 (11) 105.94 (11) 106.65 (11) 113.53 (17) 111.87 (17) 110.51 (13) 106.22 (12) 107.86 (12) 106.43 (12) 111.5 (18) 105.9 (19) 109 (3) 109.6 (19) 112 (3) 108 (3) 110.1 (17)	C11—C13—C20 C11—C13—H13A C20—C13—H13A C11—C13—H13B C20—C13—H13B H13A—C13—H13B C11—C14—C15 C11—C14—H14A C15—C14—H14A C15—C14—H14B C15—C14—H14B H14A—C14—H14B C16—C15—C19 C16—C15—C14 C19—C15—C14 C19—C15—C14 C19—C15—H15A C14—C15—H15A C14—C15—H15A C15—C16—C17	108.48 (19) 110.0 110.0 110.0 108.4 108.98 (18) 109.9 109.6 109.
O3-S1-O2 O3-S1-O1 O2-S1-O1 O3-S1-C25 O2-S1-C25 O1-S1-C25 O5-S2-O4 O5-S2-O6 O4-S2-C32 O4-S2-C32 O4-S2-C32 O6-S2-C32 C11-N1-H1E C11-N1-H1D H1E-N1-H1D H1E-N1-H1C H1E-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C C2-N2-H2E C2-N2-H2B	$\begin{array}{c} 113.03 (14) \\ 113.08 (11) \\ 110.73 (13) \\ 106.86 (11) \\ 105.94 (11) \\ 106.65 (11) \\ 113.53 (17) \\ 111.87 (17) \\ 110.51 (13) \\ 106.22 (12) \\ 107.86 (12) \\ 106.43 (12) \\ 111.5 (18) \\ 105.9 (19) \\ 109 (3) \\ 109.6 (19) \\ 112 (3) \\ 108 (3) \\ 110.1 (17) \\ 110 (2) \end{array}$	C11—C13—C20 C11—C13—H13A C20—C13—H13A C11—C13—H13B C20—C13—H13B H13A—C13—H13B C11—C14—C15 C11—C14—H14A C15—C14—H14A C15—C14—H14B C15—C14—H14B C16—C15—C19 C16—C15—C14 C19—C15—C14 C16—C15—C14 C16—C15—H15A C14—C15—H15A C14—C15—H15A C15—C16—C17 C15—C16—C17 C15—C16—H16A	108.48 (19) 110.0 110.0 110.0 108.4 108.98 (18) 109.9 109.9 109.9 109.9 109.9 109.9 109.9 109.9 109.4 (2) 109.8 (2) 109.6 109.6 109.6 (2) 109.8
O3-S1-O2 O3-S1-O1 O2-S1-O1 O3-S1-C25 O2-S1-C25 O1-S1-C25 O5-S2-O4 O5-S2-O6 O4-S2-C32 O4-S2-C32 O4-S2-C32 O6-S2-C32 C11-N1-H1E C11-N1-H1D H1E-N1-H1D H1E-N1-H1C H1E-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C C2-N2-H2B H2C-N2-H2B	$\begin{array}{c} 113.03 \ (14) \\ 113.08 \ (11) \\ 110.73 \ (13) \\ 106.86 \ (11) \\ 105.94 \ (11) \\ 106.65 \ (11) \\ 113.53 \ (17) \\ 111.87 \ (17) \\ 110.51 \ (13) \\ 106.22 \ (12) \\ 107.86 \ (12) \\ 107.86 \ (12) \\ 106.43 \ (12) \\ 111.5 \ (18) \\ 105.9 \ (19) \\ 109 \ (3) \\ 109.6 \ (19) \\ 112 \ (3) \\ 108 \ (3) \\ 110.1 \ (17) \\ 110 \ (2) \\ 112 \ (3) \end{array}$	C11—C13—C20 C11—C13—H13A C20—C13—H13A C11—C13—H13B C20—C13—H13B H13A—C13—H13B C11—C14—C15 C11—C14—H14A C15—C14—H14A C15—C14—H14B C15—C14—H14B C16—C15—C19 C16—C15—C14 C19—C15—C14 C19—C15—C14 C16—C15—H15A C14—C15—H15A C14—C15—H15A C14—C15—H15A C15—C16—C17 C15—C16—H16A C17—C16—H16A	108.48 (19) 110.0 110.0 110.0 108.4 108.98 (18) 109.9 109.9 109.9 109.9 109.9 109.9 109.4 (2) 109.8 (2) 109.6 109.6 109.6 109.8 109.8
03-S1-02 03-S1-01 02-S1-01 03-S1-C25 02-S1-C25 01-S1-C25 05-S2-04 05-S2-06 04-S2-06 05-S2-C32 04-S2-C32 04-S2-C32 04-S2-C32 C11-N1-H1E C11-N1-H1D H1E-N1-H1D H1E-N1-H1C H1E-N1-H1C H1E-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C C2-N2-H2B H2C-N2-H2B C2-N2-H2A	113.03 (14) $113.08 (11)$ $110.73 (13)$ $106.86 (11)$ $105.94 (11)$ $106.65 (11)$ $113.53 (17)$ $111.87 (17)$ $110.51 (13)$ $106.22 (12)$ $107.86 (12)$ $106.43 (12)$ $111.5 (18)$ $105.9 (19)$ $109 (3)$ $109.6 (19)$ $112 (3)$ $100.1 (17)$ $110 (2)$ $112 (3)$ $110.5 (18)$	C11—C13—C20 C11—C13—H13A C20—C13—H13A C11—C13—H13B C20—C13—H13B H13A—C13—H13B C11—C14—C15 C11—C14—H14A C15—C14—H14A C15—C14—H14B C15—C14—H14B C16—C15—C19 C16—C15—C14 C19—C15—C14 C19—C15—C14 C16—C15—H15A C19—C15—H15A C14—C15—H15A C14—C15—H15A C15—C16—H16A C17—C16—H16A C15—C16—H16B	108.48 (19) 110.0 110.0 110.0 108.4 108.98 (18) 109.9 109.9 109.9 109.9 109.9 109.9 109.9 109.3 109.4 (2) 109.8 (2) 109.6 109.6 109.6 109.6 (2) 109.8 109.8
03-S1-02 03-S1-01 02-S1-01 03-S1-C25 02-S1-C25 01-S1-C25 05-S2-04 05-S2-06 04-S2-06 04-S2-C32 04-S2-C32 04-S2-C32 04-S2-C32 06-S2-C32 C11-N1-H1E C11-N1-H1D H1E-N1-H1D H1E-N1-H1C H1E-N1-H1C H1E-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C H1D-N1-H1C C2-N2-H2B H2C-N2-H2A H2C-N2-H2A	113.03 (14) $113.08 (11)$ $110.73 (13)$ $106.86 (11)$ $105.94 (11)$ $106.65 (11)$ $113.53 (17)$ $111.87 (17)$ $110.51 (13)$ $106.22 (12)$ $107.86 (12)$ $106.43 (12)$ $111.5 (18)$ $105.9 (19)$ $109 (3)$ $109.6 (19)$ $112 (3)$ $108 (3)$ $110.1 (17)$ $110 (2)$ $112 (3)$ $110.5 (18)$ $106 (2)$	C11—C13—C20 C11—C13—H13A C20—C13—H13A C11—C13—H13B C20—C13—H13B H13A—C13—H13B C11—C14—C15 C11—C14—H14A C15—C14—H14A C15—C14—H14B C15—C14—H14B C16—C15—C19 C16—C15—C14 C19—C15—C14 C16—C15—C14 C16—C15—C14 C16—C15—H15A C14—C15—H15A C14—C15—H15A C15—C16—H16A C15—C16—H16B C17—C16—H16B	108.48 (19) 110.0 110.0 110.0 108.4 108.98 (18) 109.9 109.9 109.9 109.9 109.9 109.9 109.9 109.4 (2) 109.8 (2) 109.6 109.6 109.6 109.6 109.8 109.8 109.8 109.8

C2—C1—C6	108.78 (19)	C18—C17—C16	109.5 (2)
C2—C1—H1A	109.9	C18—C17—C12	109.5 (2)
C6—C1—H1A	109.9	C16—C17—C12	109.1 (2)
C2—C1—H1B	109.9	C18—C17—H17A	109.6
C6—C1—H1B	109.9	С16—С17—Н17А	109.6
H1A—C1—H1B	108.3	С12—С17—Н17А	109.6
N2—C2—C3	109.12 (19)	C17—C18—C20	109.3 (2)
N2—C2—C7	108.77 (18)	C17—C18—H18A	109.8
C3—C2—C7	110.1 (2)	C20—C18—H18A	109.8
N2—C2—C1	109.05 (18)	C17—C18—H18B	109.8
C3—C2—C1	110.0 (2)	C20—C18—H18B	109.8
C7—C2—C1	109.8 (2)	H18A—C18—H18B	108.3
C2—C3—C4	109.0 (2)	C15—C19—C20	109.8 (2)
С2—С3—НЗА	109.9	С15—С19—Н19А	109.7
С4—С3—НЗА	109.9	С20—С19—Н19А	109.7
С2—С3—Н3В	109.9	С15—С19—Н19В	109.7
С4—С3—Н3В	109.9	С20—С19—Н19В	109.7
НЗА—СЗ—НЗВ	108.3	H19A—C19—H19B	108.2
C10—C4—C5	109.6 (2)	C19—C20—C13	109.7 (2)
C10—C4—C3	109.9 (2)	C19—C20—C18	109.1 (2)
C5—C4—C3	108.8 (2)	C13—C20—C18	109.9 (2)
C10—C4—H4A	109.5	C19—C20—H20A	109.4
С5—С4—Н4А	109.5	C13—C20—H20A	109.4
C3—C4—H4A	109.5	C18—C20—H20A	109.4
C6—C5—C4	110.0 (2)	C22—C21—H21A	109.5
С6—С5—Н5А	109.7	C22—C21—H21B	109.5
С4—С5—Н5А	109.7	H21A—C21—H21B	109.5
C6—C5—H5B	109.7	C22—C21—H21C	109.5
C4—C5—H5B	109.7	H21A—C21—H21C	109.5
H5A—C5—H5B	108.2	H21B—C21—H21C	109.5
C9—C6—C5	109.7 (2)	C23—C22—C27	117.6 (2)
C9—C6—C1	109.4 (2)	C23—C22—C21	121.3 (3)
C5—C6—C1	109.2 (2)	C27—C22—C21	121.1 (3)
С9—С6—Н6А	109.5	C22—C23—C24	121.6 (2)
С5—С6—Н6А	109.5	C22—C23—H23A	119.2
С1—С6—Н6А	109.5	C24—C23—H23A	119.2
C2—C7—C8	109.01 (19)	C25—C24—C23	119.7 (2)
С2—С7—Н7А	109.9	C25—C24—H24A	120.1
С8—С7—Н7А	109.9	C23—C24—H24A	120.1
С2—С7—Н7В	109.9	C24—C25—C26	119.5 (2)
С8—С7—Н7В	109.9	C24—C25—S1	121.00 (18)
H7A—C7—H7B	108.3	C26—C25—S1	119.45 (18)
C7—C8—C10	109.6 (2)	C27—C26—C25	119.7 (2)
C7—C8—C9	109.6 (2)	C27—C26—H26A	120.1
C10—C8—C9	109.2 (2)	C25—C26—H26A	120.1
С7—С8—Н8А	109.5	C26—C27—C22	121.9 (2)
С10—С8—Н8А	109.5	С26—С27—Н27А	119.1
С9—С8—Н8А	109.5	С22—С27—Н27А	119.1
C6—C9—C8	109.5 (2)	C29—C28—H28A	109.5

С6—С9—Н9А	109.8	C29—C28—H28B	109.5
С8—С9—Н9А	109.8	H28A—C28—H28B	109.5
С6—С9—Н9В	109.8	C29—C28—H28C	109.5
С8—С9—Н9В	109.8	H28A—C28—H28C	109.5
Н9А—С9—Н9В	108.2	H28B-C28-H28C	109.5
C4—C10—C8	109.3 (2)	C30—C29—C34	117.6 (2)
C4C10H10A	109.8	C30—C29—C28	120.6 (3)
C8—C10—H10A	109.8	C34—C29—C28	121.7 (3)
C4C10H10B	109.8	C29—C30—C31	121.9 (2)
C8—C10—H10B	109.8	С29—С30—Н30А	119.1
H10A—C10—H10B	108.3	С31—С30—Н30А	119.1
N1-C11-C12	108.65 (18)	C32—C31—C30	119.6 (2)
N1-C11-C14	108.76 (18)	С32—С31—Н31А	120.2
C12-C11-C14	109.98 (18)	С30—С31—Н31А	120.2
N1-C11-C13	109.11 (18)	C31—C32—C33	119.3 (2)
C12—C11—C13	110.30 (18)	C31—C32—S2	120.51 (18)
C14—C11—C13	110.00 (18)	C33—C32—S2	120.14 (19)
C11—C12—C17	109.03 (18)	C34—C33—C32	120.2 (2)
C11—C12—H12A	109.9	С34—С33—Н33А	119.9
C17—C12—H12A	109.9	С32—С33—Н33А	119.9
C11—C12—H12B	109.9	C33—C34—C29	121.4 (2)
C17—C12—H12B	109.9	C33—C34—H34A	119.3
H12A—C12—H12B	108.3	С29—С34—Н34А	119.3
C6—C1—C2—N2	179.9 (2)	C11—C12—C17—C16	60.3 (2)
C6—C1—C2—C3	-60.5 (3)	C16—C17—C18—C20	-60.1 (3)
C6—C1—C2—C7	60.8 (3)	C12—C17—C18—C20	59.5 (3)
N2—C2—C3—C4	-179.4 (2)	C16-C15-C19-C20	60.1 (3)
C7—C2—C3—C4	-60.1 (3)	C14—C15—C19—C20	-59.9 (3)
C1—C2—C3—C4	61.0 (3)	C15—C19—C20—C13	60.2 (3)
C2—C3—C4—C10	59.7 (3)	C15-C19-C20-C18	-60.3 (3)
C2—C3—C4—C5	-60.4 (3)	C11—C13—C20—C19	-59.8 (2)
C10—C4—C5—C6	-59.5 (3)	C11—C13—C20—C18	60.2 (3)
C3—C4—C5—C6	60.7 (3)	C17—C18—C20—C19	60.1 (3)
C4—C5—C6—C9	59.4 (3)	C17—C18—C20—C13	-60.2 (3)
C4—C5—C6—C1	-60.5 (3)	C27—C22—C23—C24	0.7 (4)
C2—C1—C6—C9	-60.4 (3)	C21—C22—C23—C24	-179.0 (3)
C2—C1—C6—C5	59.7 (3)	C22—C23—C24—C25	-0.3 (4)
N2—C2—C7—C8	-180.0 (2)	C23—C24—C25—C26	-0.5 (4)
C3—C2—C7—C8	60.5 (3)	C23—C24—C25—S1	176.9 (2)
C1—C2—C7—C8	-60.7 (3)	O3—S1—C25—C24	8.2 (2)
C2—C7—C8—C10	-60.0 (3)	O2—S1—C25—C24	-112.6 (2)
C2—C7—C8—C9	59.8 (3)	O1—S1—C25—C24	129.4 (2)
C5—C6—C9—C8	-59.7 (3)	O3—S1—C25—C26	-174.4 (2)
C1—C6—C9—C8	60.1 (3)	O2—S1—C25—C26	64.8 (2)
C7—C8—C9—C6	-60.0 (3)	O1—S1—C25—C26	-53.2 (2)
C10—C8—C9—C6	60.1 (3)	C24—C25—C26—C27	0.9 (4)
C5—C4—C10—C8	59.9 (3)	S1—C25—C26—C27	-176.5 (2)
C3—C4—C10—C8	-59.7 (3)	C25—C26—C27—C22	-0.5 (4)
C7—C8—C10—C4	59.9 (3)	C23—C22—C27—C26	-0.3 (4)

C9—C8—C10—C4	-60.1 (3)	C21—C22—C27—C26	179.4 (3)
N1-C11-C12-C17	-179.86 (19)	C34—C29—C30—C31	-1.1 (4)
C14—C11—C12—C17	-60.9 (2)	C28—C29—C30—C31	178.7 (3)
C13-C11-C12-C17	60.6 (2)	C29—C30—C31—C32	-0.6 (4)
N1-C11-C13-C20	179.99 (19)	C30—C31—C32—C33	1.6 (4)
C12-C11-C13-C20	-60.7 (2)	C30—C31—C32—S2	-175.92 (18)
C14—C11—C13—C20	60.8 (2)	O5—S2—C32—C31	99.4 (2)
N1-C11-C14-C15	179.24 (19)	O4—S2—C32—C31	-138.5 (2)
C12-C11-C14-C15	60.4 (2)	O6—S2—C32—C31	-19.9 (2)
C13-C11-C14-C15	-61.3 (2)	O5—S2—C32—C33	-78.1 (2)
C11-C14-C15-C16	-59.6 (3)	O4—S2—C32—C33	44.0 (2)
C11-C14-C15-C19	60.2 (2)	O6—S2—C32—C33	162.6 (2)
C19-C15-C16-C17	-59.6 (3)	C31—C32—C33—C34	-1.0 (4)
C14—C15—C16—C17	59.9 (3)	S2—C32—C33—C34	176.6 (2)
C15-C16-C17-C18	59.9 (3)	C32—C33—C34—C29	-0.7 (4)
C15-C16-C17-C12	-60.0 (3)	C30—C29—C34—C33	1.7 (4)
C11—C12—C17—C18	-59.6 (3)	C28—C29—C34—C33	-178.0 (3)

Hydrogen-bond geometry (Å, °)

Cg9 and Cg10 are the centroids of the C22-C27 and C29-C34 rings, respectively.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1C…O4	0.89 (2)	2.02 (2)	2.908 (3)	177 (3)
N1—H1D···O5 ⁱ	0.90 (2)	1.99 (2)	2.883 (3)	177 (3)
N1—H1E···O6 ⁱⁱ	0.89 (2)	1.92 (2)	2.806 (3)	173 (3)
N2—H2C···O1	0.91 (2)	1.93 (2)	2.834 (3)	174 (3)
N2—H2B···O2 ⁱⁱⁱ	0.89 (2)	1.92 (2)	2.806 (3)	170 (3)
N2—H2A···O3 ^{iv}	0.89 (2)	2.01 (2)	2.901 (3)	175 (3)
C4—H4A…Cg10 ^{iv}	0.98	3.18	3.878 (3)	130
C7—H7B···Cg9 ⁱⁱⁱ	0.97	2.87	3.801 (3)	161
C19—H19B···Cg10 ^v	0.97	2.91	3.861 (3)	167

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+2, -y+1, -z+2; (iii) -x+1, -y+1, -z+1; (iv) x-1, y, z; (v) x, y-1, z.

Fig. 1

